
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 02. November 2020
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler, Ulysse Schaller

Algorithms & Data Structures Exercise sheet 7 HS 20

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission: On Monday, 9 November 2020, send your solution by email to your TA and your peer
graders between 09:00 and 09:15 in the morning. Exercises that are marked by ∗ are challenge exercises.
�ey do not count towards bonus points.

Exercise 7.1 Tinder Don*na Juan*a.

You registered on Tinder and you got a lot of matches (you may assume that you have an endless
amount of matches). Now, you would like to create a schedule for your dates. You don’t date more than
one person per day. Further, a�er having a date you always tell your best friend how it went before
going to your next date.

You tell your best friend about your success on Tinder and that you are trying to �nd a nice schedule for
your dates. Your best friend gives you a listK of days on which he/she is not available, and challenges
you to enumerate all possible date-schedules for the next T days. A schedule consists of T entries,
where the i-th entry contains whether you have a date on this day or not. Note that you always need
to have a day in which your best friend is available between two of your dates.

Use dynamic programming to determine the number of di�erent date-schedules under these cons-
traints. In an exam, we would give full points for an O(T) solution, but you may get partial points for
larger runtimes like O(T · |K|).

Address the following aspects in your solution:

1. Dimensions of the DP table: What are the dimensions of the table DP [. . .] ?

2. De�nition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

5. Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

6. Running time: What is the running time of your solution?

Dimensions of the DP table: �e DP table is an array of length T .

De�nition of the DP table: DP [i] contains the number of possible schedules if there are i days.

Computation of an entry: InitializeDP [1] to 2: you can either have a date on day 1 or not. Initialize
DP [2] to 3: you can have date on the �rst day or on the second day or don’t have dates.

An entry i > 2 can be calculated as follows: DP [i] can be calculated by adding up the number of
possible schedules if you have a date on day i plus the number of possible schedules if you do not have
a date on day i.

If you don’t have a date on day i, this places no restriction on the schedules, so the number of possible
schedules in this event is DP [i − 1]. If you have a date on day i, then there needs to be a day during
which your best friend is available between your previous date and day i. In particular, if j < i is the
last day in which your friend was available before day i, then you can’t have a date on any of the days
j, j + 1, . . . , i− 1, and in this case the number of possible schedules is DP [j − 1]. �erefore,

DP [i] = DP [i− 1] + DP [max{j < i : j /∈ K} − 1], (1)

where the second term is replaced by 1 if the maximum is empty (indeed, if your best friend was not
available any of the �rst i − 1 days, then the only way to have a date on day i is if this is your �rst
date, i.e. all the entries before day i are scheduled with no date). For simplicity, we will simply de�ne
DP [0] = 1 and say that the maximum in equation (1) is 1 if it is over the empty set.

In order to get the desired O(T) runtime, we will actually compute the maximum values M [i] :=
max{j < i : j /∈ K} in advance and store them in an array M . First we convert K into an array of
length T which has a one in exactly those positions which are blocked, and zeroes elsewhere. In this
way, we can decide in constant time whether j ∈ K for some given date j.

Nowwe computeM recursively. We initialize withM [1] = M [2] = 1. We can then compute the values
M [i] from smallest to largest i using

M [i] =

{
M [i− 1] if i− 1 ∈ K ,
i− 1 if i− 1 /∈ K .

Calculation order: We can calculate the entries of DP from smallest to largest.

Extracting the solution: All we have to do is read the value at DP [T].

Running time: First, it takes time O(T) to compute the values M [i] for all 1 ≤ i ≤ T . Using these
values, it takes time Θ(1) to compute a new entry in the DP table, since equation (1) becomes

DP [i] = DP [i− 1] + DP [M [i]− 1].

Since there are T entries in the DP table, we therefore need Θ(T) operations to �llDP . �erefore, the
total running time is O(T).
Remark 1. It is also possible to design an algorithm withO(|K|+L) runtime, where L is the longest
interval without entries inK , i.e., the largest di�erence between any two consecutive entries inK . �is
runtime may be be�er in some situations.

Exercise 7.2 Longest Snake.

You are given a game-board consisting of hexagonal �elds F1, . . . , Fn. �e �elds contain natural num-
bers v1, . . . , vn ∈ N. Two �elds are neighbors if they share a border. We call a sequence of �elds
(Fi1 , . . . , Fik) a snake of length k if, for j ∈ {1, . . . , k − 1}, Fij and Fij+1 are neighbors and their

2

values satisfy vij+1 = vij + 1. Figure 1 illustrates an example game board in which we highlighted the
longest snake.

For simplicity you can assume that Fi are represented by their indices. Also you may assume that you
know the neighbors of each �eld. �at is, to obtain the neighbors of a �eld Fi you may call N (Fi),
which will return the set of the neighbors of Fi. Each call of N takes unit time.

a) Provide a dynamic programming algorithm that, given a game-board F1, . . . , Fn, computes the
length of the longest snake.

1

2

3

3

4

5

6 7 8

1211

10

10 9

11 2

20

21

9

6

1312

1

5

Figure 1: Example of a longest snake.

Hint: Your algorithm should solve this problem usingO(n log n) time, where n is the number of hexa-
gonal �elds.

Address the following aspects in your solution:

1. Dimensions of the DP table: What are the dimensions of the table DP [. . .] ?

2. De�nition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

5. Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

6. Running time: What is the running time of your solution?

Dimensions of the DP table: �e DP table is linear, its size is n.

De�nition of the DP table: DP [i] is the length of the longest snake with head Fi (that is, the
length of the longest snake of the form (Fj1 , . . . , Fjm−1 , Fi)).

Computation of an entry:
DP [i] = 1 + max

Fj∈N (Fi)
vj=vi−1

DP [j].

3

�at is, we look at those neighbors of Fi that have values vj smaller than vi exactly by 1, and choose
the maximal value in the DP table among them. If there are no such neighbors, we de�ne max in
this formula to be 0.

Calculation order: We �rst sort the hexagons by their values. �en we �ll the table in ascending
order, that is, i1, . . . , in such that vij ≤ vij+1 for all j = 1, . . . n− 1.

Extracting the solution: �e output is max
1≤i≤n

DP [i].

Running time: We compute the order in time O(n log n) by sorting v1, . . . , vn. �en each entry
can be computed in timeO(1) and �nally we compute the output in timeO(n). So the running time
of the algorithm is O(n log n).

b) Provide an algorithm that takes as input F1, . . . Fn and a DP table from part a) and outputs the
longest snake. If there are more than one longest snake, your algorithm can output any of them.
State the running time of your algorithm in Θ-notation in terms of n.

Solution:At the beginningwe �nd a head of a snake that is someFj1 such thatDP [j1] = max
1≤i≤n

DP [i].

If DP [j1] 6= 1, we look at its neigbours and �nd some Fj2 such that DP [j2] = DP [j1] − 1. If
DP [j2] 6= 1, then among neighbors of Fj2 we �nd some Fj3 such that DP [j3] = DP [j2] − 1 and
so on. We stop when DP [jm] = 1 (where m is exactly the length of the longest snake). �en we
output the snake (Fj1 , . . . , Fjm).

�e running time of this algorithm is Θ(n), since we use Θ(n) operations to �nd Fj1 and we need
Θ(1) time to �nd each Fjk for 1 < k ≤ m ≤ n and Θ(m) time to output the snake.
Remark 2. An alternative solution would be to store the predecessor in a longest snake with head
Fi directly inDP [i] (in addition to the length of this longest snake), and store ∅ if the length of the
longest snake is just 1. �en, in order to recover a longest snake, we simply need to �nd a head of
a snake that has maximal length and then follow the sequence of predecessors until we reach an
entry DP [i] that has ∅ as predecessor.

c)∗ Find a linear time algorithm that �nds the longest snake. �at is, provide an O(n) time algorithm
that, given a game-board F1, . . . , Fn, outputs the longest snake (if there are more than one longest
snake, your algorithm can output any of them).

Solution:Wecan use recursionwithmemorization. Similar to part a), wewill �ll an arrayS[1, . . . , n]
of lengths of longest snakes, that is, S[i] is the length of the longest snake with head Fi. Consider
the following pseudocode:

Algorithm 1 Fill-lengths(v1, . . . , vn)

S[1], . . . , S[n]← 0, . . . , 0
for i = 1, . . . , n do

if S[i] = 0 then
Move-to-tails(i, S, v1, . . . , vn)

return S

where the procedure Move-to-tails(i, v1, . . . , vn) is:

4

Algorithm 2Move-to-tails(i, S, v1, . . . , vn)

for Fj ∈ N (Fi) do
if vj = vi − 1 and S[j] = 0 then

Move-to-tails(j, S, v1, . . . , vn)

S[i] = 1 + max
Fj∈N (Fi)
vj=vi−1

S[j]

As in part a), we assume thatmax over the empty set is 0. Let us showwhy this procedure is correct.
First, since the algorithmMove-to-tails is recursive, we have to check that it actually �nishes. Move-
to-tails(i, S, v1, . . . , vn) is calling Move-to-tails only for indices j with vj < vi, and therefore an
easy induction on vj shows that the algorithmwill always terminate. We now show the correctness
of Move-to-tails(i, S, v1, . . . , vn) by induction on vi.

Base case vi = 1: If vi = 1, then there is no j such that vj = vi − 1. �erefore, the max in Move-
to-tails(i, S, v1, . . . , vn) is empty, so S[i] is set to 1, which is indeed the length of a longest
snake with head Fi when vi = 1.

Induction hypothesis: A�er calling Move-to-tails(i, S, v1, . . . , vn) with vi = k, the value of S[i]
contains the length of the longest snake with head Fi.

Induction step k → k + 1: Let i be an index with vi = k + 1. �en for any Fj ∈ N (Fi) such
that vj = vi − 1, we have vj = k, so by the induction hypothesis a�er calling Move-to-
tails(j, S, v1, . . . , vn) the value of S[j] contains the length of the longest snake with head Fj .
�erefore, a�er se�ing

S[i] = 1 + max
Fj∈N (Fi)
vj=vi−1

S[j],

the value of S[i] indeed contains the length of the longest snake with head Fi.

A�er we �ll S, we can use the same algorithm as in part b) to �nd a longest snake (we should
replace DP by S in the description of that algorithm).

For the runtime, wewill show that for each i ∈ {1, . . . , n}we callMove-to-tails(i, S, v1, . . . , vn) ex-
actly once. Indeed, it is called onlywhenS[i] = 0, and a�er the �rst call ofMove-to-tails(i, S, v1, . . . , vn)
has terminated, we have S[i] > 0 by the invariant for the rest of the algorithm. So Move-to-
tails(i, S, v1, . . . , vn) will not be called a second time a�er the �rst call has terminated. While
the �rst call of Move-to-tails(i, S, v1, . . . , vn) is running, Move-to-tails is only called for indices
j with vj < vi, which follows from a very simple induction. So Move-to-tails(i, S, v1, . . . , vn) is
also not called a second time while the �rst call is still running. So we have shown that Move-
to-tails(i, S, v1, . . . , vn) is called exactly once for each i. �erefore, the running time is linear in
n.

�e technique that we used here is closely related to depth-�rst search and topological ordering of
a graph. �ese topics will be studied later in this course.

Exercise 7.3 Making change with few coins (2 points).

Suppose that you have (in�nitely many) coins of di�erent values x1, . . . , xn ∈ N, and youwant to make
them sum to a given amount with as few coins as possible (where it is allowed to use several coins of
the same value). More formally, for some amount a ∈ N, you want to determine the minimal number

5

of coins k that are needed so that their values sum to a (if it is not possible to get amount a with the
given coin values, we will say that k = ∞). For example, if you have coins of values 3 and 7, then if
a = 20 we can get this amount with k = 4 coins (and it’s not possible to get it with fewer coins), while
if a = 8 then k =∞ since it’s impossible to make such coins sum to 8.

Use dynamic programming to compute the minimal number of coins needed to get amount a. Your
solution should have runtime O(an).

Address the following aspects in your solution:

1. Dimensions of the DP table: What are the dimensions of the table DP [. . .] ?

2. De�nition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

5. Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

6. Running time: What is the running time of your solution?

Dimensions of the DP table: �e DP table is an array of length a + 1, indexed by b = 0, . . . , a.

De�nition of the DP table: DP [b] is the minimal number of coins required to get amount b (and it
is∞ if it’s impossible to get this amount).

Computation of an entry: We initialize the �rst entry asDP [0] = 0 since we can get an amount of
0 using 0 coins.

An amount b ≥ 1 requires at least one coin, and if we remove this coin (say of value xj ≤ b) from (one
of) the smallest set of coins that sums to b, then the remaining set will sum to b − xj and should also
be (one of) the smallest sets of coins that does so. �erefore we have

DP [b] = 1 + min
xj≤b

DP [b− xj],

where the minimum is∞ if it is empty (i.e. if xj > b for all j = 1, . . . , n).

Calculation order: We can calculate the entries of DP from smallest to largest amount.

Extracting the solution: �e minimal number of coins required to get a is then simply DP [a].

Running time: �ere are a + 1 entries in the DP table, and each of them requires O(n) time to be
computed, so the total running time is O(an).

Exercise 7.4 Integer partitions (1 point).

An integer partition of n ∈ Z≥0 is a way of writing n as a sum of positive integers. For example, the
integer partitions of 3 are: 3, 2 + 1 and 1 + 1 + 1. �e order of the summands does not ma�er, i.e., 2 + 1
and 1 + 2 are the same partition of 3.

�e partition function p(n) computes the number of integer partitions of n. For example, p(0) = 1,
p(1) = 1, p(2) = 2, p(3) = 3 and p(4) = 5. Despite looking seemingly simple, no closed form for the
partition function p(n) is known. However, it is possible to compute p(n) in quadratic time and linear
memory by dynamic programming. Your task is to derive this algorithm.

6

Hint: Develop �rst a solution that needs quadratic time and quadratic memory, then think about how to
save memory. Such a solution (with quadratic memory) would still give partial points in an exam.

Solution:

In order to derive our algorithm we consider a simpler problem: How many ways are there to partition
n into numbers that are smaller or equal k? Let’s call this number P (n, k). We have p(n) = P (n, n).

Let’s consider a few examples. We observe P (4, 1) = 1, because there is only one way to partition 4
using only numbers≤ 1, namely, 1+1+1+1. As soon as we go to P (4, 2) things get more interesting.
�ere are three ways partitioning 4 using numbers ≤ 2, namely, 1 + 1 + 1 + 1, 2 + 1 + 1 and 2 + 2.
Within those, we can distinguish two types of partitions: the two that contain 2s and the one that does
not.

Formally, we can write P (4, 2) = P (4, 1) + P (2, 2). Similarly, for arbitrary n ≥ 0 and k ≥ 1 we get
P (n, k) = P (n, k− 1) +P (n− k, k) if n− k ≥ 0 and P (n, k) = P (n, k− 1) otherwise. Additionally,
we have P (0, 0) = 1 and P (n, 0) = 0 for n ≥ 1. Let’s think about P as if it was a two dimensional
array of size (n + 1)× (n + 1). �e computation of P (n, k) only depends on elements of the previous
column P (n, k − 1) and the current column P (n− k, k).

�us, we can solve the problem by iteratively applying a dynamic program that given the previous
column previous, with previous[i] = P (i, k − 1) for 0 ≤ i ≤ n, and an integer k, computes
the current column by �lling an (n + 1)-dimensional DP table.

We start by initializing previouswith previous[i] = P (i, 0) for 0 ≤ i ≤ n and we set k = 1. We
will proceed in rounds, and in the k-th round we re-compute the DP table such that DP [i] = P (i, k).
At the end of the round we overwrite previous with the new values of the DP-table.

Dimensions of the DP table: �e DP table is linear, its size is n + 1. �e auxiliary table previous
has the same size and dimension.

De�nition of the DP table: Before the k-th round, previous[i] = P (i, k − 1) is the number of
ways to partition i using numbers ≤ k − 1. A�er the k-th round, DP [i] = P (i, k) is the number of
ways to partition i using numbers ≤ k.

Computation of an entry: DP [i] = previous[i], for i < k, andDP [i] = previous[i] +DP [i−
k], for i ≥ k.

Calculation order: From le� to right.

In each round, a�er �lling the DP table we set previous = DP and increase k by one.

Extracting the solution: Once we reached k = n, the solution is in DP [n].

Running time: Our DP table has size n+1 and the computation of each entry is inΘ(1). �us, solving
the DP once is in Θ(n) and solving it n times in Θ(n2) as desired.

7

